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Effect of Disorder on the Trapping of 
Frenkel Excitons in Three-Dimensional Systems 

D. L. Huber 1 and W. Y. Ching 2 

A numerical study is made of the effect of disorder on the trapping of Frenkel 
excitons in three-dimensional systems at T=0 K. A Gaussian distribution of 
optical transition frequencies is assumed. The disorder enhances the decay of a 
k =0 exciton created by pulsed optical excitation, but reduces the overall 
exciton trapping rate. An interpretation of the results in terms of increased 
exciton scattering and reduced exciton mobility is outlined. 
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1. I N T R O D U C T I O N  

In two previous  papers  (1'2) we have repor ted  the results of  numer ica l  
studies of the t r app ing  of  Frenke l  exci tons at  T = 0  K. In ref. 1, we con- 
s idered the case of a one-d imens iona l  array,  whereas  th ree-d imens iona l  
systems were t rea ted  in ref. 2. In bo th  instances,  it was assumed tha t  the 
a r ray  of opt ica l ly  active centers had  t rans la t iona l  invar iance  so that  the 
only d i so rde r  in the p rob l em was tha t  associa ted  with the r a n d o m  dis t r ibu-  
t ion of traps.  In  this paper ,  we explore  the effect of a Gauss i an  d i s t r ibu t ion  
of  opt ica l  t rans i t ion  frequencies on the r a n d o m  t r app ing  process  in a 
s imple cubic system. 

The  H a m i l t o n i a n  charac te r iz ing  the t r app ing  takes the form (2) 

~ # = Z v j a + a j  + Z '  u(a/ak+a~aj)--i2I'ja;aj (1) 
j (j ,k) j 

where aj and  a + are  exci ton ann ih i l a t ion  and  c rea t ion  ope ra to r s  in the site 
representa t ion.  Also,  vj is the opt ical  t rans i t ion  frequency assoc ia ted  with 
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the j t h  site and u is an interaction parameter. The prime on the second 
summation signifies that the interaction is limited to nearest-neighbor 
pairs. The third term in (1) induces the trapping. We use the same model 
as in refs. 1 and 2, i.e., the trapping rate for the j th  site is F =  1 (0) if site 
j does (does not) have a trap associated with it. The distribution of traps 
is postulated to be random. Unlike refs. 1 and 2, where vj is taken to be 
constant, we assume v s is characterized by a Gaussian distribution P(v): 

P(v) 1 __ (V__ V)2/2a 2 
(27~0_2) 1/2 e (2) 

with mean g and variance a 2. In what follows, we will study simple cubic 
arrays. We take u = - 1 ,  so that in the absence of disorder the exciton 
bandwidth is equal to 12, and the optically active (k = 0) exciton mode lies 
at the bottom of the band. 

As discussed in refs. 1 and 2, the trapping of a k = 0 exciton created 
by pulsed optical excitation is characterized by a set of correlation 
functions of the form 

Gj( t )=N ,/2~ (O[aj(t) a; ]0) (3) 
k 

where [0) denotes the exciton vacuum, and N is the number of centers. 
The Gj obey the equations of motion 

d 
i~t Gi(t ) = y, wskGk(t ) (4) 

J 

with initial condition Gj(O)= N -1/2. The matrix Wjk has the form 

wjj = v j -  iFj (5a) 

wjk -- u, j, k nearest neighbors (5b) 

wjk -- 0, j, k not nearest neighbors (5c) 

Two funtions are calculated from the set of Gf  

P ( t ) =  ~ Gj ( t )2 IN  (6) 

and 

Q(t) = ~  [Gj(t)[ 2 (7) 
J 
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Fig. l. Plot of In P(t) vs. t, for F =  1, trap concentration 0.1; (a) a = 0, (b) ~ = l, (c) a = 2, 
(d) a = 4 ,  (e) a = 8 .  1 2x  1 2 x  12 array. 

As shown in refs. 1 and 2, P(t) is the probability of finding an exciton in 
the k = 0 state at time t, whereas Q(t) is the probability of there being an 
exciton in any mode at time t. In general, P(t) <<. Q(t), since both scattering 
and trapping processes deplete the k = 0 mode, while only the latter affect 
Q(t). In the absence of traps, Q ( t ) =  1, independent of the vj, whereas 
P(t)<~ 1; only when there are no traps, and there is full translational 
symmetry, does P(t)= Q(t)= 1. On the other hand, if every center has a 
trap associated with it, and all the vj are the same, then P(t)= Q(t)= 
exp( - 2Ft). 
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Fig. 2. Plot of In Q(t) vs. t, for F =  1, trap concentration 0.1; (a) a = 0, (b) • = 1, (c) a = 2, 
(d) a = 4 ,  (e) a = 8 .  12 x 1 2 x  12 array. 
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Fig. 3. Same as Fig.  1, except F= 6. 

2. N U M E R I C A L  C A L C U L A T I O N S  

In order to study the effects of the randomness in the optical transition 
frequencies on the exciton trapping, we have calculated P(t) and Q(t) 
assuming a Gaussian distribution of frequencies with a = 0, 1, 2, 4, and 8 
(the results are independent of the mean frequency ~). The concentration of 
traps was 0.1, i.e., 10% of the sites had traps associated with them. Our 
results for P(t) and Q(t) for the case F =  1 are shown in Figs. 1 and 2, 
respectively. Figures 3 and 4 show the corresponding results for F =  6. All 
curves were calculated for 12x 12x 12 arrays with periodic boundary 
conditions. The data shown are from a single configuration of traps and 
transition frequencies. Other configurations gave rise to similar data. We 
discuss these results below. 
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Same as Fig. 2, except F= 6. Note change in scale relative to Fig. 2. 
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3. D I S C U S S I O N  

The most significant result to emerge from the calculations was the dif- 
ference in behavior between P(t) and Q(t) that appears with increasing o. 
Not surprisingly, the effect of disorder in the transition frequencies is to 
enhance the rate at which excitons are removed from the k = 0 mode. This 
is reflected in Figs. 1 and 3 in the decrease in P(t) with increasing o. The 
behavior of Q(t) is just the opposite. Q(t) increases with increasing or. 
Disorder in the transition frequencies reduces the trapping rate, while it 
enhances the rate of depletion of the k = 0 mode. 

The decrease in P(t) with increasing a is associated with the exciton 
scattering induced by the random variation of the transition frequencies. As 
shown in ref. 2, P(t) decays even in the absence of traps when 6 #0 .  The 
contrasting behavior of Q(t) can be thought of as arising from a reduction 
in exciton mobility due to the increased disorder. As a consequence, it 
takes longer for the excitons to reach the traps, so that the effective 
trapping rate is reduced. 

The results presented here have important implications for the inter- 
pretation of exciton trapping data in real materials, especially ones where 
the exciton absorption line is inhomogeneously broadened due to 
microscopic strains. Because of the 1'educed mobility, care must be 
exercised in comparing trapping rates with the corresponding rates in 
"ideal" systems with minimal disorder. 
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